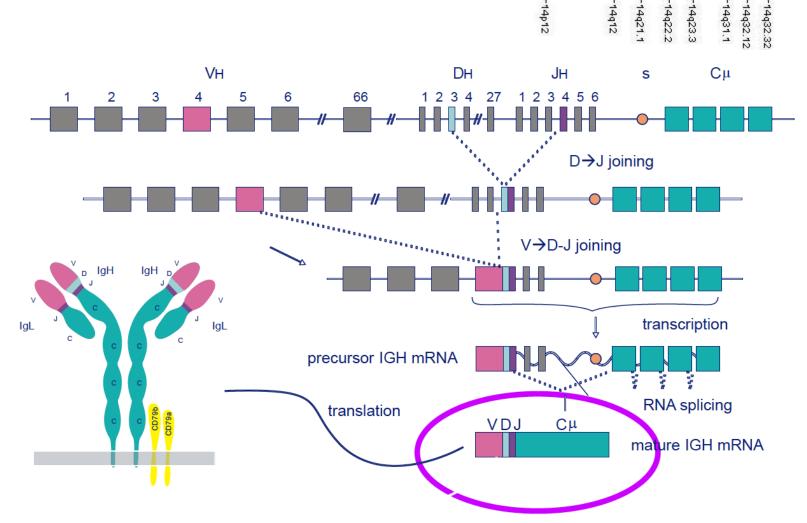
The ROYAL MARSDEN

NHS Foundation Trust

Translocations and clonality detection in lymphoproliferative disorders by capturebased Next-generation sequencing

Dörte Wren MSc MPhil on behalf of the EuroClonality-NGS consortium

Molecular Diagnostics
Centre for Molecular Pathology
The Royal Marsden NHS FT
London, UK

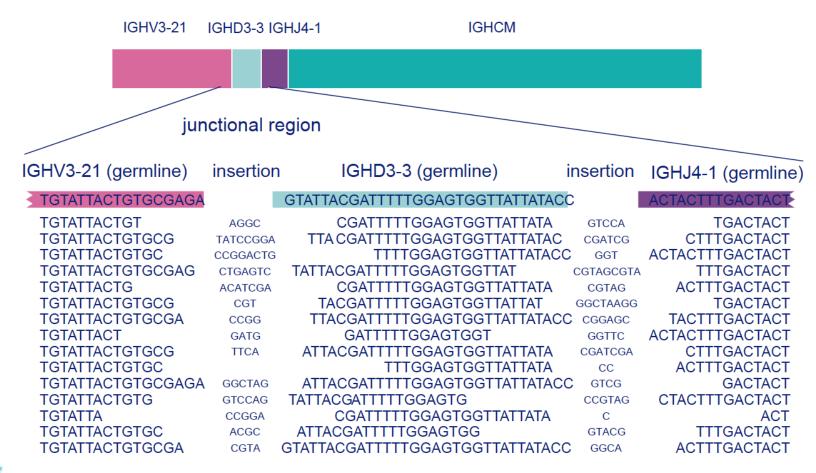

Detection and characterization of clonal IG/TR rearrangements and translocations

Provides critical information in lymphoproliferative neoplasms

- Ascertaining the clonal nature of lymphoid proliferations
- Characterization of translocations in lymphomas and leukemias
- Characterization of CDR3 regions for MRD target identification and stereotyping analysis
- Analysis of immune repertoire in cancer and non-malignant disorders

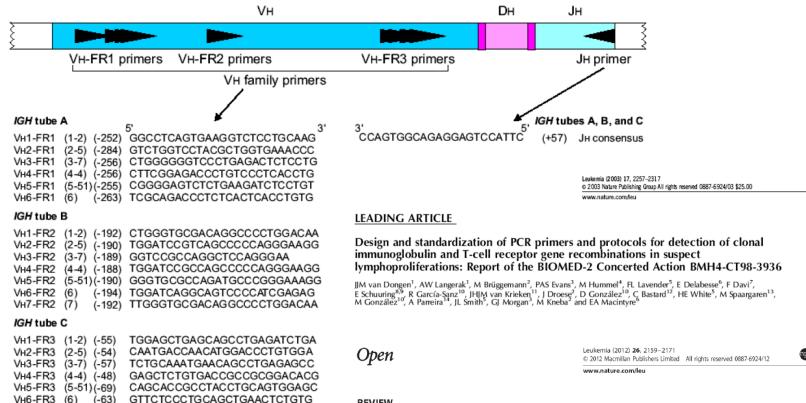
IGH rearrangements

₽14p13


14431.3

-14q32.2

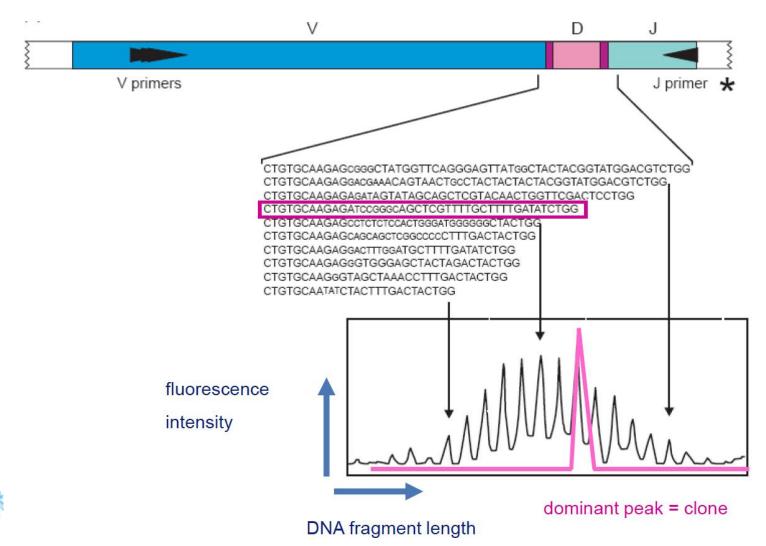
-14q21.3 -14q13.2



IGH rearrangements: combinatorial diversity

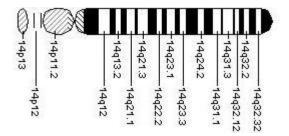
Detection of IG/TR rearrangements by PCR

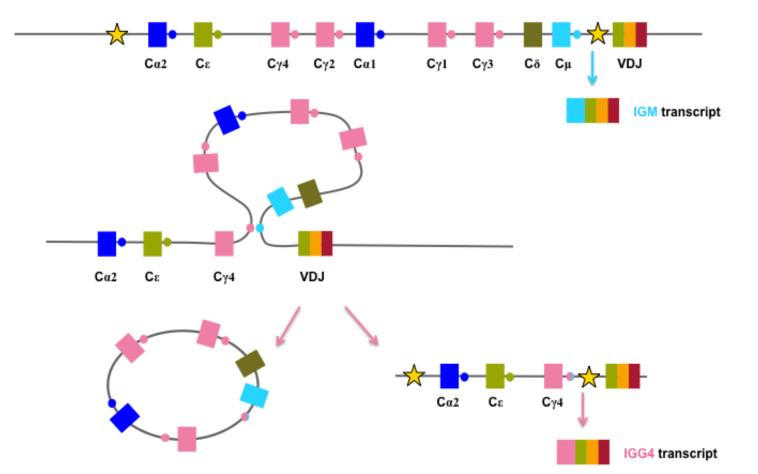
V_H7-FR3 (7)


REVIEW

CAGCACGGCATATCTGCAGATCAG

EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations

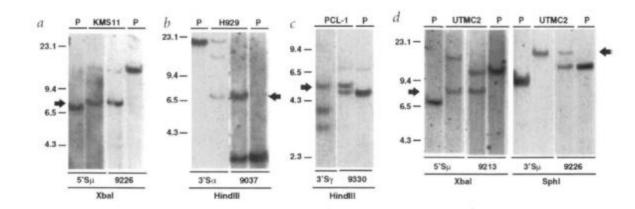

AW Langerak¹, PJTA Groenen², M Brüggemann³, K Beldjord⁴, C Bellan⁵, L Bonello⁶, E Boone⁷, GI Carter⁸, M Catherwood⁹, F Davi¹⁰, M-H Delfau-Larue¹¹, T Diss¹², PAS Evans¹³, P Gameiro¹⁴, R Garcia Sanz¹⁵, D Gonzalez¹⁶, D Grand¹⁷, Å Håkansson¹⁸, M Hummel¹⁹, H Liu²⁰, L Lombardia²¹, EA Macintyre²², BJ Milner²³, S Montes-Moreno²⁴, E Schuuring²⁵, M Spaargaren²⁶, E Hodges²⁷ and JJM van Dongen¹

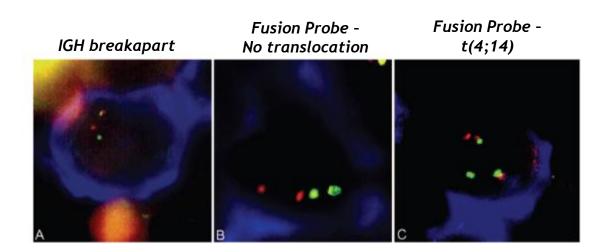

Detection of IG/TR rearrangements by PCR

IGH Isotype Switching

IGH translocations lead to oncogene overexpression

Chr. 14


Chr.4


Translocation Detection

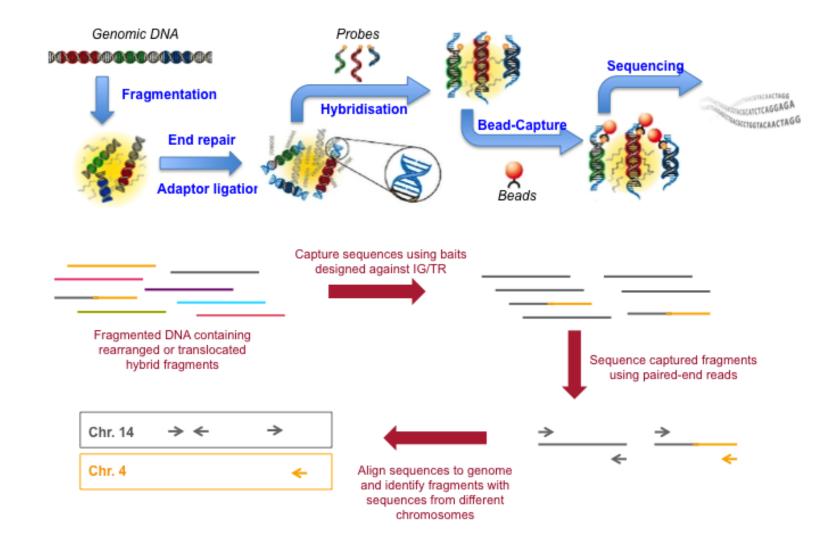
Southern blotting

FISH

Break-apart probes for IGH followed by dual fusion probes for the partner chromosomes

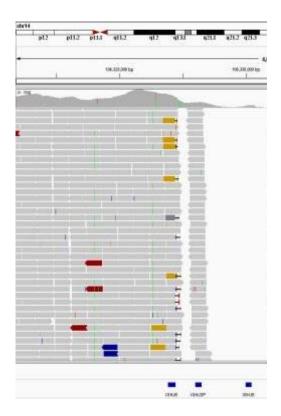
AIM: to develop a comprehensive NGS tool for lymphoproliferative disorders

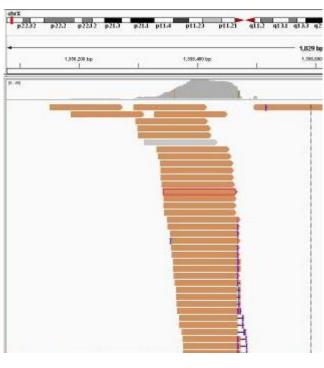
- Detection of clonality by analysing V(D)J rearrangements
- Detection of IG and TR translocations
- Detection of diagnostic, prognostic and predictive genetic mutations in lymphoid disorders
- Detection of clinically-relevant amplifications and deletions in lymphoid disorders



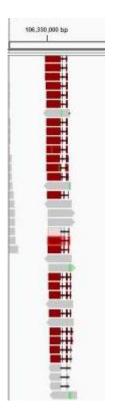
EuroClonality SeqCap EZ pilot: design

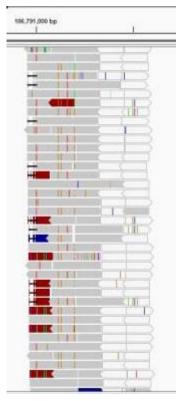
- 30 clonal samples from EC-NGS consortium laboratories
- Including different B and T cell disorders, with well characterised samples by FISH for translocations and/or V(D)J sequencing
- B-ALL, T-ALL, SMZL, CLL, BURKITT, MM, FL, DLBCL
- EC-NGS panel performed in all samples and compared with original results
- Baits covered all V, D and J genes including switch regions within the constant region (~180kb in total)




Euro-Clonality SeqCap EZ lymphoid panel

Detection of chromosomal translocations using the Euro-Clonality SeqCap EZ lymphoid panel





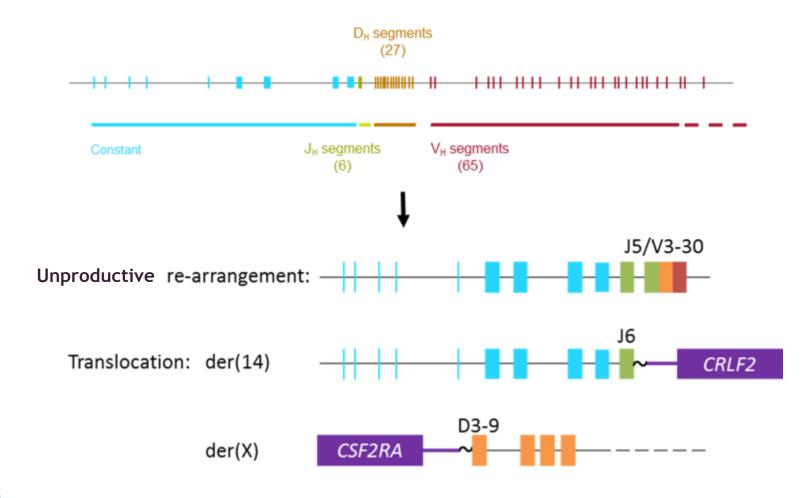
IGHJ6 (chromosome 14) 5' CRLF2 (chromosome X)

IGHD3-9 (chr 14)

Detection of V(D)J rearrangements using the Euro-Clonality SeqCap EZ lymphoid panel

IMGT-V Quest

Complementary reverse sequence compared with the human IG set from the IMGT reference directory


Result summary:	Unproductive IGH rearranged sequence (out-of-frame ju	inction)	
V-GENE and allele	Homsap IGHV3-30-3*01 F, or Homsap_IGHV3-30-3*02 F	score = 775	identity = 100.00% (156/156 nt)
J-GENE and allele	Homsap IGHJ5*02 F	score = 237	identity = 96.08% (49/51 nt)
D-GENE and allele by IMGT/JunctionAnalysis	Homsap IGHD2-2*01 F	D-REGION is	s in reading frame 2
FR-IMGT lengths, CDR-IMGT lengths and AA JUNCTION	[X.6.38.11]	[X.8.X]	CARDASEGRAAI#NWFDPW

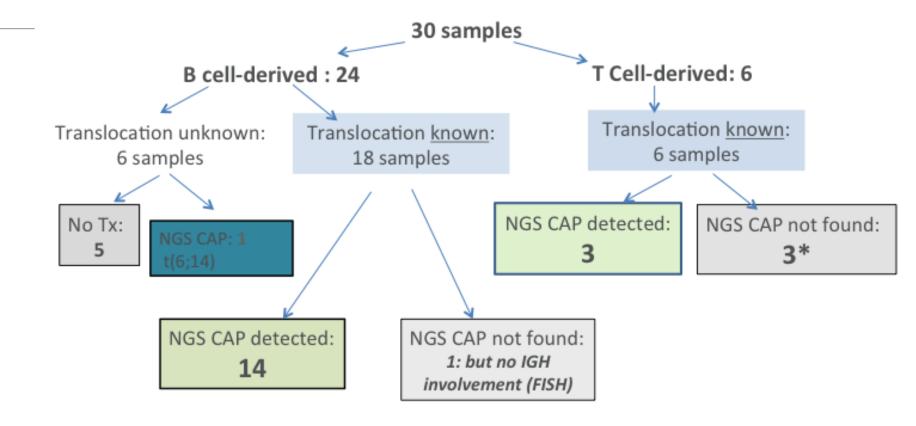
IGHJ5

IGHV3-30

Schematic representation

EuroClonality SeqCap EZ pilot: Translocations

		NGS Capture results				
		der	(IG/TR)	der(partner d	hromosome)	
Diagnosis	Karyotyping/ FISH result	Break 1	Break 2	Break 1	Break 2	
B-ALL	t(X;14)	IGHJ6	5' CRLF2	IGHD3-9	5' CRLF2	
B-ALL	t(Y;14)	IGHJ5	5' CRLF2	IGHD6-19	5' CRLF2	
BL	t(8;14)	na	na	IGHA1sw	MYC intron 1	
BL	t(8;14)	IGH sw	5' MYC	IGH sw	5' MYC	
BL	t(8;14)	IGHJ4	5' MYC	na	na	
BL	t(8;14)	IGHA1sw	MYC intron 1	IGHA1 sw	MYC intron 1	
CLL	t(2;14)	IGHM sw	5' BCL11A	IGHM sw	5' BCL11A	
CLL	t(14;18)	IGHJ6	BCL2 MBR	na	na	
CLL	t(14;18)	IGHJ5	BCL2 MCR	IGHD2-15	BCL2 MCR	
CLL	t(14;16)	na	na	IGHD2-2	chr16:69479932	
CLL	t(1;14)	IGH sw	chr1:206286226	IGH sw	chr1:206286210	
SMZL	t(5;14)	IGHM sw	chr5:88608990	IGHM	chr5:88608986	
SMZL	t(6;14)	IGHA2 sw	CCND3	na	na	
DLBCL	IGH break	IGHM sw	IRF4	IGH sw	na	
DLBCL	t(14;18)	IGHJ5	BCL2	IGHV3-21	BCL2	
T-ALL	inv14/t(14;14)	TRDD3	na	BCL11B	na	
T-ALL	t(7;10)	TRBJb2.5	na	TLX1	na	
T-NHL	inv7	TRGV8	na	TRBJb2.7	na	



EuroClonality SeqCap EZ pilot: V(D)J rearrangements

		IGH				IGK				IGL				
		Allele 1			Allele 2			Allele 1		Alle	Allele 2		Allele 1	
Diagnosis	Results	IGHV	IGHD	IGHJ	IGHV	IGHD	IGHJ	IGKV	IGKJ	IGKV	IGKJ	IGLV	IGLJ	
BL	Sanger Seq.	3-15	3-22	4	Х	3-16	4	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	3-15	3-22	4	χ	3-16	4	1-9	2	D1-13	2	None o	detected	
BL	Sanger Seq.	3-23	na	4	χ	х	Х	4-1	3	χ	χ	n/a	n/a	
	NGS	3-23	4-23	4	χ	X	Χ	4-1	3	χ	χ	None o	detected	
BL	Sanger Seq.	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	3-72	6-13	4	χ	3-22	4	1-5	4	VK3-1	1-Kde	None o	detected	
CLL	Sanger Seq.	3-30	2-2	4	Х	х	Х	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	3-30	na	4	χ	Х	χ	4-1	3	VK1-	8-Kde	None o	detected	
CLL	Sanger Seq.	5-51	4-17	4	Х	х	Х	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	5-51	4-17	4	χ	Х	χ	1-16	4	Х	Х	None o	detected	
CLL	Sanger Seq.	4-34	5-18	6	χ	х	Х	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	4-34	5-18	6	Х	2-8	4	4-1	2	χ	Х	None o	detected	
CLL	Sanger Seq.	4-61	6-19	5	5-51	5-12	4	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	4-61	6-19	5	5-51	5-12	4	2-30	2	4-1	3	2-14	3	
SMZL	Sanger Seq.	2-5	6-19	2	Х	х	Х	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	2-5	6-19	2	Х	Х	Х	2-28	2	χ	Х	None (detected	
CLL	Sanger Seq.	4-39	6-13	5	Х	Х	Х	n/a	n/a	n/a	n/a	n/a	n/a	
	NGS	4-39	6-13	5	Х	3-16	4	1-39	4	1-17	1	None o	detected	

EuroClonality SeqCap EZ pilot: Summary

3 FAILS

*Design of baits did not include TCRBJb1= accounts for 3 of the 3 samples

EuroClonality SeqCap EZ pilot: conclusions

 A capture based protocol is a feasible approach for the simultaneous detection of clonality, translocations, mutations and CNV in lymphoproliferative disorders

- A pan-European validation within the EC-NGS is planned for 2015 in well-characterised samples by FISH (translocations) and PCR-Sanger sequencing (clonality + genetic mutations)
- A bioinformatics pipeline specific for IG/TR and translocations from capture data is being validated

Acknowledgments

Royal Marsden Molecular Diagnostics

Brian Walker

David Gonzalez-de-Castro

Roche Nimblegen

Dan Burgess

Dan Brekken

Ilaria Fasanella

Anton W. Langerak

Monica Brüggemann

Mark Catherwood

Christiane Pott

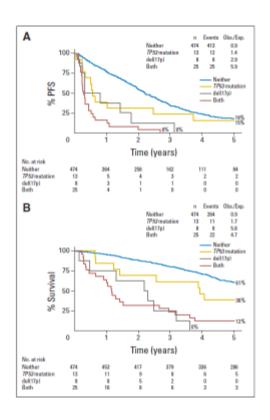
Kostas Stamatopoulos

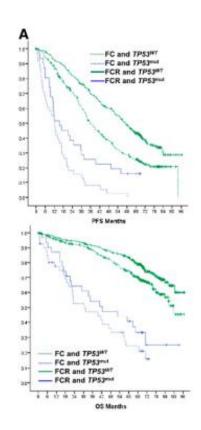
The ROYAL MARSDEN
NHS Foundation Trust

TP53 Network http://www.ericll.org/pages/tp53network

TP53 mutational analysis

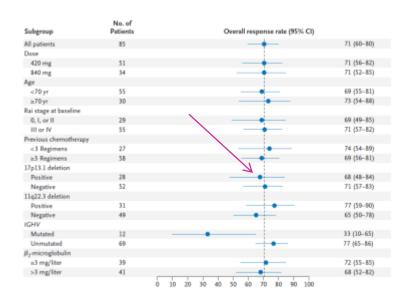
Aim: To improve the performance of TP53 mutation analysis and increase availability to allow better management of 17p-/TP53mut CLL

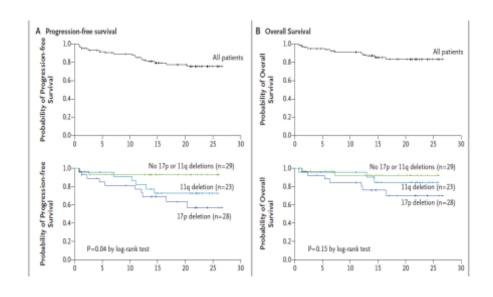

TP53 network:


Certifying labs: Brno (CZ) and Ulm (DE)

Training centres per country: Czech Republic, France, Germany, Greece, Italy, Spain, Nordic countries and the UK

17p-/TP53mut Poor outcome with FC/FCR

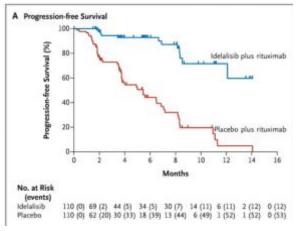


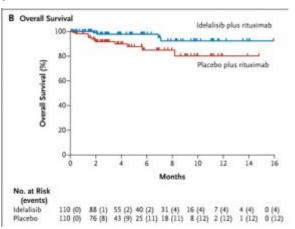


German CLL8 Stilgenbauer Blood 2014 Zenz 2010 J Clin Onc

New treatment options for 17p-/*TP53*mut CLL: Ibrutinib

- Ibrutinib (BTK inhibitor)
- Approved by FDA and EMA as front-line treatment for 17p-/TP53mut




Overall response to Ibrutinib according to subgroup

Byrd JC et al. N Engl J Med. 2013 Jul 4; 369(1): 32-42. RESONATE study: Improved PFS and OS in previously treated patients

New treatment options for 17p-/*TP53*mut CLL: Idelalisib + Rituximab

- Idelalisib (PI3Kδ inhibitor)
- o Approved by EMA as front-line treatment for 17p-/TP53mut

Subgroup	Idelalisib plus Rituximab	Placebo plus Rituximab	Hazard Ratio for Disease Progress	ion or Death (95% CI)
	no. of p	atients		
Overall	110	110	⊢ • →	0.15 (0.08-0.28)
IGHV			1	
Mutated	19	17	 i	0.25 (0.07-0.95)
Unmutated	91	93	· · · · ·	0.13 (0.06-0.27)
17p Deletion or TP53	mutation		7	
Either	46	50	→ • · ·	0.12 (0.05-0.32)
Neither	64	60	⊢ → ·	0.17 (0.07-0.43)
17p Deletion			1	
Yes	26	31		0.14 (0.04-0.47)
No	84	79	· · · ·	0.14 (0.07-0.31)
Sex			1	
Male	76	68		0.10 (0.04-0.24)
Female	34	42		0.30 (0.11-0.78)
Age				
<65 yr	21	27		0.24 (0.07-0.77)
≥65 yr	89	83		0.11 (0.05-0.26)
		0.01	0.1 1.0	10.0
				-
			Idelalisib Better Placeb	o Better

25

TP53 Network http://www.ericll.org/pages/tp53network

Aims of *TP53* network

- Education
- Selection of appropriate techniques
- Establish Quality control procedure
- Workshop Brno:

Role of national training centres

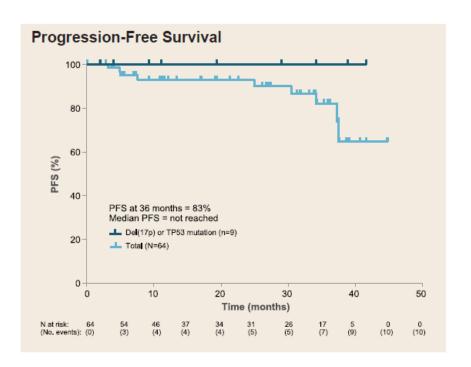
- Coordination the activities of ERIC/TP53 network
- Provide technical support: on-site training, sample exchange
- Offer to perform diagnostic testing during implementation
- Contribute to the online helpdesk
- Contact details:
- Dörte Wren/David Gonzalez-de-Castro
- Molecular Diagnostics Royal Marsden Sutton UK
- <u>Dorte.wren@icr.ac.uk</u>
- David.Gonzalez-de-Castro@icr.ac.uk

Venetoclax (AbbVie/Roche)

- Breakthrough therapy designation granted by FDA for CLL with 17p deletion
- Efficacy study in relapsed/refractory CLL or untreated 17p- ongoing

New treatment options for 17p-/*TP53*mut CLL: BCL2 inhibitor (ABT-199, Venetoclax)

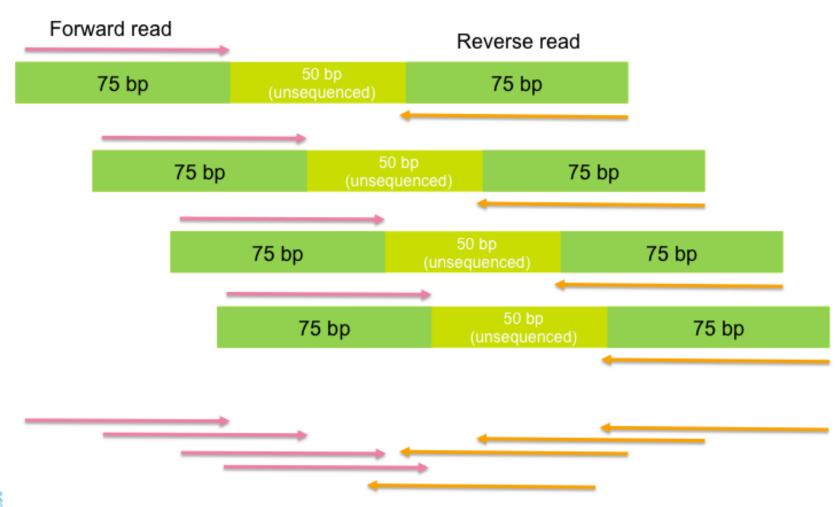
- EHA 2015: Venetoclax + Rituximab:
- Patients previously treated (n=49)
- Overall response 84%, 41% complete response or CR with incomplete marrow recovery; MRD negativity in 65% (evaluated in 20pts)


	All pts n=49	del17p n=9
ORR, n (%)	41 (84)	7 (78)
CR/CRi	20° (41)	3 ^b (33)
PR	20 (41)	4 (44)
nodular PR (nPR)	1 (2)	0 (0)
PR unconfirmed ^c	4 (8)	1 (11)
Stable disease (SD)	1 (2)	0 (0)
Progressive disease (PD)	2 (4)	0 (0)
Discontinued prior to assessment ^d	1(2)	1 (11)



comp

- Ibrutininb (Imbruvia): Pharmacyclics, Inc + Johnson & Johnson's Janssen Pharmaceutical
- Idelalisib (Zydelig), Gilead Sciences



Euro-Clonality SeqCap EZ lymphoid panel

